Earthquake Report: Japan!

There continue to be earthquakes probably related to the 2011.03.11 Tohoku-Oki M 9.0 earthquake (the 4th largest earthquake recorded on modern seismologic instruments). Here are two excellent summary Earthquake Report pages associated with this region: The original Earthquake Report for the M 9.0 earthquake with some great animations!. A page where I present slip models, coulomb stress models, and aftershock location maps.

    Here are the USGS websites for the larger earthquakes plotted in my interpretive poster below.

  • 2016.08.20 09:01:26 UTC M 6.0
  • 2016.08.20 15:58:04 UTC M 6.0
  • 2016.08.20 16:10:34 UTC M 5.3
  • 2016.08.20 16:28:11 UTC M 5.3
    Here are some Earthquake Reports for seismicity associated with the M 9.0 Tohoku-Oki earthquake.

  • 2011.03.11 M 9.0 Japan (Tohoku-Oki)
  • 2013.10.25 M 7.1 Japan (Honshu)
  • 2015.02.16 M 6.7 Japan (Sanriku Coast)
  • 2015.02.16 M 6.7 Japan (Sanriku Coast Update #1)
  • 2015.02.16 M 6.7 Japan (Sanriku Coast Update #2)
  • 2015.02.20 M 6.7 Japan (Sanriku Coast Update #3)
  • 2015.02.21 M 6.7 Japan (Sanriku Coast Update #4)
  • 2015.02.25 M 6.3 Japan (Sanriku Coast Update #5)

Here is my interpretive map that shows the epicenter, along with the shaking intensity contours. These contours use the Modified Mercalli Intensity (MMI) scale. The MMI is a qualitative measure of shaking intensity. More on the MMI scale can be found here and here. This is based upon a computer model estimate of ground motions, different from the “Did You Feel It?” estimate of ground motions that is actually based on real observations.

I placed a moment tensor / focal mechanism legend on the poster. There is more material from the USGS web sites about moment tensors and focal mechanisms (the beach ball symbols). Both moment tensors and focal mechanisms are solutions to seismologic data that reveal two possible interpretations for fault orientation and sense of motion. One must use other information, like the regional tectonics, to interpret which of the two possibilities is more likely.

    I include some inset figures and maps.

  • In the upper right corner I include a map that shows seismicity before and after the M 9.0 Tohoku-Oki earthquake. Ammon et al. (2011) invert teleseismic P waves and broadband Raleigh waves with high-rate GPS data to constrain their slip model. Slip magnitude in meters is represented by shades of red. They also plot the source time function plot. Source time function plots show us the amount of energy that is released during an earthquake and how that energy release varies with time.
  • In the lower right corner I include a map that shows the seismicity in the region before and after the M 9.0 earthquake (Gusman et al., 2012).
  • In the lower left corner I include two figures from Ikuta et al. (2012). The upper panel shows how the 2011 slip region compares to slip from previous M 7 class earthquakes. The lower panel shows the slip deficit for this part of the subduction zone. Basically, this is a way of viewing how much plate convergence might be expected to contribute to earthquake slip over time.
  • In the upper left corner I include a figure from Lay et al. (2011) that shows the coulomb stress changes due to the 2011 earthquake. Basically, this shows which locations on the fault where we might expect higher likelihoods of future earthquake slip.


Here is a map (from this Earthquake Report page) showing the three largest magnitude earthquakes in this recent seismic swarm. Check out my previous post here to see other slip models, estimates of stress change due to the 2011 March 11 Tohoku-Oki earthquake, and how these relate to historic slip models.


    Below are some of the insets as individual figures. I include their original figure captions.

  • Here is a figure showing seismicity in the region of the Tohoku-Oki earthquake, the source time function of the M 9.0 earthquake, and their slip model (Ammon et al., 2011). There are dozens of slip models for the M 9.0 earthquake and they are all non unique. I include their figure caption below as a blockquote.

  • Map showing foreshocks, aftershocks, MORVEL model plate motions, rupture-model slip contours, and the locations of hrGPS stations (inverted triangles) used in to construct the model. Focal mechanisms are shown at the GCMT centroid.

  • Here is another map showing the seismicity associated with the Tohoku-Oki earthquake (Gusman et al., 2012). I include their figure caption below as a blockquote.

  • Map of the 2011 Tohoku earthquake. Red star represents the epicenter of the mainshock, rectangles represent the subfaults, gray circles represent fore-shocks and purple circles represent aftershocks and extensional faulting events in the outer-rise.

  • Here is a plot that shows how the 2011 slip region compares to slip from previous M 7 class earthquakes (Ikuta et al., 2012). Ikuta et al. (2012) discuss how regions surrounding the higher slip during the M 9.0 Tohoku-Oki earthquake had experienced smaller earthquakes that consumed some of the plate motion strain, thereby owing to the lower slip in those regions during the M 9.0 earthquake. These are also regions that have increased coulomb stress and increased seismicity following the 2011.03.11 earthquake. I include their figure caption below as a blockquote.

  • Co-seismic slip of the 2011 Tohoku-Oki earthquake and previous M 7-class earthquakes around the source region. (a) Co-seismic slip distribution of the 2011 Tohoku-Oki earthquake (blue intensity scale, as in Figure 2); the area with slip greater than 10 m is enclosed by a white line. The two stars show the locations of the main shock and the largest after-shock (March 11, 2011). The asperity distribution for M7-class earthquakes occurring in the past 80 years is shown by colored contours (after Murotani et al. [2004], Yamanaka and Kikuchi [2004], and Y. Yamanaka (NGY Seismology Notebook, http:// www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note, last updated April 11, 2011)). The contour for each asperity encloses the areas in which the slip is greater than half of the maximum slip. (b) Cumulative seismic slip distribution along the trench for the earthquakes shown in Figure 10a. The total length of each arrow represents the maximum slip of the event, and the body length of each arrow represents the average slip. Modified after Figure 12b in Yamanaka and Kikuchi [2004], with the addition of the R4 region (data for the earthquakes in 1938 and 1982 are from Murotani et al. [2004] and Mochizuki et al. [2008], respectively) and new earthquakes (Y. Yamanaka, NGY Seismology Notebook, http://www.seis.nagoya-u.ac. jp/sanchu/Seismo_Note, last updated April 11, 2011). Slips on spatially overlapping asperities are accumulated. It is known that at least three more M7-class earthquakes have occurred since 1930 around the focal area of the southernmost 1982 earthquake (in 1943, 1961, and 1965). Vertical dotted line shows the slip expected with slip-deficit accumulation over 80 years.

  • Here is a plot showing how the low seismic coupling in the regions surrounding the high slip from the M 9.0 earthquake affect the slip deficit. Basically, this is a way of viewing how much plate convergence might be expected to contribute to earthquake slip over time. In this case, we see how the smaller earthquakes took up some of the slip adjacent to the 2011 slip patch (think about where today’s swarm took place compared to the region that slipped in 2011). I include their figure caption below as a blockquote.

  • Schematic illustration of apparent low seismic coupling and small effective slip deficit controlled by a persistent strong asperity that ruptured to produce a M9-class earthquake. The vertical axis represents the subduction rate and the horizontal axis represents the distance from the strong asperity. The accumulation rate of the slip deficit is shown by the solid curve. Apparent seismic coupling before the M9-class earthquake is represented by the ratio of the co-seismic slip (length of the gray arrows) to the subduction rate. The seismic coupling, as monitored by the occurrence of M7-class earthquakes, is low in areas close to the strong asperity. When the persistent strong asperity slips, the remaining slip deficit (gray area) is released. Note that this figure does not show the accumulated slip deficit; instead, it shows the relative contributions of strong and weak asperities to the accumulation rate of the slip deficit.

  • Here is a figure that shows the coulomb stress changes due to the 2011 earthquake. Basically, this shows which locations on the fault where we might expect higher likelihoods of future earthquake slip. Note how many of the aftershocks, including today’s earthquake, are in the region of increased coulomb stress. I include their figure caption below as a blockquote.

  • Maps of the Coulomb stress change predicted for the joint P wave, Rayleigh wave and continuous GPS inversion in Fig. 2. The margins of the latter fault model are indicated by the box. Two weeks of aftershock locations from the U.S. Geological Survey are superimposed, with symbol sizes scaled relative to seismic magnitude. (a) The Coulomb stress change averaged over depths of 10–15 km for normal faults with the same westward dipping fault plane geometry as the Mw 7.7 outer rise aftershock, for which the global centroid moment tensor mechanism is shown. (b) Similar stress changes for thrust faults with the same geometry as the mainshock, along with the Mw 7.9 thrusting aftershock to the south, for which the global centroid moment tensor is shown.

  • Here is a figure schematically showing how subduction zone earthquakes may increase coulomb stress along the outer rise. The outer rise is a region of the downgoing/subducting plate that is flexing upwards. There are commonly normal faults, sometimes reactivating fracture zone/strike-slip faults, caused by extension along the upper oceanic lithosphere. We call these bending moment normal faults. There was a M 7.1 earthquake on 2013.10.25 that appears to be along one of these faults. I include their figure caption below as a blockquote.

  • Schematic cross-sections of the A) Sanriku-oki, B) Kuril and C) Miyagi-oki subduction zones where great interplate thrust events have been followed by great trench slope or outer rise extensional events (in the first two cases) and concern about that happening in the case of the 2011 event.

    Here are some animations from the ARIA Project at Caltech/JPL. These document geodetic motion during the Tohoku-Oki Earthquake.


    Beginning with a description of the animations in blockquote.

    We show 2 videos on Japan’s movement over the 35 minutes following the initiation of the Tohoku-Oki (M 9.0). These images are made possible because of the density of GPS stations in Japan (about 1200 GPS stations, or a GPS station every ~30 km). The preliminary GPS displacement data that these animations are based on are provided by the ARIA team at JPL and Caltech. All Original GEONET RINEX data provided to Caltech by the Geospatial Information Authority (GSI) of Japan.

  • a) ARIA_GPSDisplacement:
  • This animation shows the cumulative displacements of the GPS stations relative to their position before the M9.0 Tohoku-Oki earthquake. The colors show the magnitude of displacement and the arrows indicate direction. We observe 2 kinds of motions, a permanent deformation in the vicinity of the earthquake (first red star) intermediately followed by a perturbation that travels about ~4 km/sec which are the surface waves generated by the earthquake.

  • Here is the file for direct download. (18 MB mp4)
  • b) ARIA_GPSvelocity:
  • This animation shows the estimated instantaneous velocities of the GPS stations. In this view, we only observe the transient motion caused by the earthquake. The first waves to propagate from the mainshock (red star) are the body waves (P and S) but they can be barely seen (look for a slight purple perturbation). These are followed by the surface waves (Love and Rayleigh) propagating as 2 orange-red stripes, as surface waves generate larger velocities at the surface than the body waves. At about 25 minutes there is a subtle signal from seismic waves generated by a small aftershock in northern Japan. At around 30 minutes we observe the seismic waves from a M7.9 aftershock (smaller red star), the largest aftershock to date. Since this event is about 30 times smaller than the mainshock, the P and S waves from this earthquake are too small to be detected with these rapid GPS solutions, but we can observe the surface waves. The small patches of color that appear randomly across Japan show the noise level of the measurements and are not related to any significant ground motion.

  • Here is the file for direct download. (6 MB mp4)
  • b) ARIA_GPSDisplacement_composite:
  • Here is the file for direct download. (6 MB mp4)
  • Here are some maps that are static results displayed in the above animations.
  • Coseismic Horizontal:

  • Coseismic Vertical:

Here is the usgs map for the region:


M7.3 Honshu

Earthquake Report: Bayside (northern California): Update #1

So, I put together another map with today’s earthquake in context with the historic seismicity and some other factors. Now the USGS magnitude is M = 4.7 and there is a moment tensor for this earthquake (that looks very similar to the focal mechanism, which is not always the case.). Here is my initial earthquake report here.

Below is a map showing the Northern California Earthquake Data Center (NCEDC) seismicity plotted. Today’s M 4.7 earthquake is plotted as a yellow star. This earthquake is similar to other earthquakes plotted in this region.

    Here are the data plotted on the map.

  • Northern California Earthquake Data Center Double Differenced earthquake epicenters, using the Northern California Earthquake Catalog (1984-2014). These epicenters are located by using the double difference method. Basically, earthquakes from a similar region are processed in such a way that, because they are in a similar region it is assumed that the seismic waves/rays travel through the same material (i.e. with the same seismic velocity). With this assumption, their positions can be better determined. These better positions are better relative to each other, but not in an absolute way. Here is an overview of the double difference method from Lamont Doherty. There is a software program that people use to process seismic data for this method (HypoDD).
  • These earthquake epicenters are plotted vs depth with color and magnitude with circle diameter.
  • I plot the depth to the slab in purple. These lines represent an estimate of the depth of the Cascadia subduction zone fault (McCrory et al., 2006).
  • I also plot the current USGS active fault and fold database. The offshore fault map is incomplete, but has been remapped by Dr. Chris Goldfinger and will be released by the USGS in the coming months. I cannot plot the new faults until it is officially released. These faults are in red and then I also plot the faults used by the USGS national seismic hazard map team in black.
  • On the eastern part of the map one may observe the non-volcanic tremor interpreted by the Pacific Northwest Seismic Network. These data can be downloaded by anyone. There is also a great online interface that lets one create animations. These tremor are basically small earthquakes that are not as resolvable on seismographs, so they cannot be located like regular earthquakes. Because of this, these tremor locations are only epicenters (no depth information).
  • The background data are topographic data and bathmetric data compiled by Dr. Jason Chaytor when he was working at the Active Tectonics Lab at Oregon State University.


    I also include some inset figures.

  • In the upper left corner I place a map of the Cascadia subduction zone. This map shows the Cascadia subduction zone, along with other major plate boundary faults in the region (Gorda Rise, Mendocino fault, San Andreas fault). The Juan de Fuca and Gorda plates subduct norteastwardly beneath the North America plate at rates ranging from 29- to 45-mm/yr. Sites where evidence of past earthquakes (paleoseismology) are denoted by white dots. Where there is also evidence for past CSZ tsunami, there are black dots. These paleoseismology sites are labeled (e.g. Humboldt Bay). Some submarine paleoseismology core sites are also shown as grey dots. The two main spreading ridges are not labeled, but the northern one is the Juan de Fuca ridge (where oceanic crust is formed for the Juan de Fuca plate) and the southern one is the Gorda rise (where the oceanic crust is formed for the Gorda plate). The map also shows the interpretation of faults that are part of the internally deforming Gorda plate. These faults within the Gorda plate are responsible for the large damaging earthquakes in 1980, 2005, and 2010 (others also in 2014, and 2015).
  • In the upper right corner I place a figure from Rollins and Stein (2010) that shows their interpretations for some earthquakes in this region. This was published in response to the January 2010 Gorda plate earthquake. The faults are from Chaytor et al. (2004). The 1980, 1992, 1994, 2005, and 2010 earthquakes are plotted and labeled.
  • In the lower left corner I place a figure from Chaytor et al. (2004) that shows their interpretation of the tectonics of the Gorda plate based upon high resolution bathymetric data (showing the shape of the seafloor).
  • I also include the moment tensor and a moment tensor legend. There is more material from the USGS web sites about moment tensors and focal mechanisms (the beach ball symbols). Both moment tensors and focal mechanisms are solutions to seismologic data that reveal two possible interpretations for fault orientation and sense of motion. One must use other information, like the regional tectonics, to interpret which of the two possibilities is more likely.

Here is my initial earthquake report map as presented in the first earthquake report here.


Here is the seismic record from Jaime Wayne’s Netquake Seismometer. Here is a link to the netquake page. The seismometer is located near Orick.


In this map below (from a Mendocino fault earthquake on 2016/01/01), I label a number of other significant earthquakes in this Mendocino triple junction region. Another historic right-lateral earthquake on the Mendocino fault system was in 1994. There was a series of earthquakes possibly along the easternmost section of the Mendocino fault system in late January 2015, here is my post about that earthquake series.


References:

  • Chaytor, J.D., Goldfinger, C., Dziak, R.P., Fox, C.G., 2004. Active deformation of the Gorda plate: Constraining deformation models with new geophysical data. Geology 32, 353-356.
  • McCrory, P. A., Blair, J. L., Oppenheimer, D. H., and Walter, S. R., 2006. Depth to the Juan de Fuca slab beneath the Cascadia subduction margin; a 3-D model for sorting earthquakes U. S. Geological Survey
  • Nelson, A.R., Kelsey, H.M., Witter, R.C., 2006. Great earthquakes of variable magnitude at the Cascadia subduction zone. Quaternary Research 65, 354-365.
  • Rollins, J.C., Stein, R.S., 2010. Coulomb Stress Interactions Among M ≥ 5.9 Earthquakes in the Gorda Deformation Zone and on the Mendocino Fault Zone, Cascadia Subduction Zone, and Northern San Andreas Fault. Journal of Geophysical Research 115, 19 pp.

Earthquake Report: Bayside (northern California)

Well, after installing a stilling basin for our new tide gage installation at Trinidad, CA, I was napping in my upstairs bedroom in Manila, CA. I was awakened by a short (2-3 second) short shaking earthquake. Turns out it was a M 4.8 earthquake east-southeast of my residence. Here is the USGS website for this earthquake. The depth is currently set at about 23 km, so it is near the megathrust, but is probably in the Gorda plate. There was an earthquake in this region last October, which had a different focal mechanism and was to the north a few kms.

#Update 1. I looked at the map at the bottom of this report. Today’s earthquake plots close to where the megathrust is estimated to be between 15 and 20 km (McCrory et al., 2006). So, I was correct that this earthquake is in the downgoing Gorda plate.

#Update 2. The map now has a moment tensor (blue) instead of a focal mechanism (orange). Now I am thinking that this could possibly be on an east-west fault since it is more aligned with the Mendocino fault. However, I am sticking with my initial interpretation as most of the earthquakes that we know about in the Gorda plate are northeast striking left-lateral strike slip faults.

    I put together this quick earthquake poster for this earthquake and have a few brief inset figures.

  • In the upper left corner I place a map of the Cascadia subduction zone. I discuss this figure below.
  • In the upper right corner I place three figures. These three maps each show a different measure of the ground shaking using the Modified Mercalli Intensity Scale. The MMI is a qualitative measure of shaking intensity. More on the MMI scale can be found here and here.
      From left to right:

    1. The “Did You Feel It?” map. This is a map that shows the ground shaking based upon peoples’ online reporting.
    2. The Shake Map. This map shows a computer modeled estimate of the ground shaking.
    3. The MMI contour map.
    4. In the lower right corner I show the attenuation with distance plot. This is a plot showing how the ground motions attenuate (lessen) with distance from the earthquake. The orange line is an estimate of the intensity of ground motions based on a numerical model. This numerical model is based on a regression of hundreds of earthquakes (distance vs. magnitude/intensity). These regressions form the basis for Ground Motion Prediction Equations (GMPEs). The blue dots are the actual observations made by real people (using the DYFI form that I posted above). These model based estimates of ground shaking intensity are used, especially for larger earthquakes, to determine what damage might be expected.
    5. I placed a moment tensor / focal mechanism legend in the upper right corner of the map. There is more material from the USGS web sites about moment tensors and focal mechanisms (the beach ball symbols). Both moment tensors and focal mechanisms are solutions to seismologic data that reveal two possible interpretations for fault orientation and sense of motion. One must use other information, like the regional tectonics, to interpret which of the two possibilities is more likely. I suspect that this is probably a left lateral strike slip earthquake based upon the focal mechanism and our knowledge of the tectonics of the Gorda plate.


      Here is the record from the seismometer located across the hallway from the HSU Dept of Geology Office. The seismograph is located in Van Matre Hall. Photo Credit Dr. Mark Hemphill-Haley.


      Here I have a summary of earthquakes for this region (including an earthquake in the Explorer plate to the north).


      I present material about the Cascadia subduction zone for the Friends of the Arcata Marsh (FOAM) held on 7/22/16 at the Arcata Marsh Interpretive Center. This page has some supporting material from this presentation, including the digital presentation file. The material in this post is also found on this page here.


      Here is a map of the Cascadia subduction zone, modified from Nelson et al. (2004). The Juan de Fuca and Gorda plates subduct norteastwardly beneath the North America plate at rates ranging from 29- to 45-mm/yr. Sites where evidence of past earthquakes (paleoseismology) are denoted by white dots. Where there is also evidence for past CSZ tsunami, there are black dots. These paleoseismology sites are labeled (e.g. Humboldt Bay). Some submarine paleoseismology core sites are also shown as grey dots. The two main spreading ridges are not labeled, but the northern one is the Juan de Fuca ridge (where oceanic crust is formed for the Juan de Fuca plate) and the southern one is the Gorda rise (where the oceanic crust is formed for the Gorda plate).


      Here is a version of the CSZ cross section alone (Plafker, 1972). This shows two parts of the earthquake cycle: the interseismic part (between earthquakes) and the coseismic part (during earthquakes). Regions that experience uplift during the interseismic period tend to experience subsidence during the coseismic period.


      This figure shows how a subduction zone deforms between (interseismic) and during (coseismic) earthquakes. We also can see how a subduction zone generates a tsunami. Atwater et al., 2005.

      Here is an animation produced by the folks at Cal Tech following the 2004 Sumatra-Andaman subduction zone earthquake. I have several posts about that earthquake here and here. One may learn more about this animation, as well as download this animation here.

      This figure shows the regions that participate in this interseismic and coseismic deformation at Cascadia. Atwater et al., 2005. Black dots on the map show sites where evidence for coseismic subsidence has been found in coastal marshes, lakes, and estuaries.

      Here is a map showing a number of data sets. Seismicity is plotted versus depth (NCEDC). Tremor is plotted (Pacific Northwest Seismic Network). Vertical Deformation rates are plotted (unpublished). Slab depth contours (km) are plotted (McCrory et al., 2006). Fault locking zones are plotted (Wang et al., 2003; Burgette et al., 2009). Bob McPherson (Humboldt State University, Department of Geology) is currently working on a research paper where he will discuss how the seismicity reveals the location of the seismogenically locked fault zone.


      This map shows the various possible prehistoric earthquake rupture regions (patches) for the past 10,000 years. Goldfinger et al., 2012. These rupture scenarios have been adopted by the USGS hazards team that determines the seismic hazards for the USA.

        References:

      • Atwater, B.F., Musumi-Rokkaku, S., Satake, K., Tsuju, Y., Eueda, K., and Yamaguchi, D.K., 2005. The Orphan Tsunami of 1700—Japanese Clues to a Parent Earthquake in North America, USGS Professional Paper 1707, USGS, Reston, VA, 144 pp.
      • Burgette, R. et al., 2009. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone in Journal of Geophysical Research, v. 114, B01408, doi:10.1029/2008JB005679
      • Chaytor, J.D., Goldfinger, C., Dziak, R.P., and Fox, C.G., 2004. Active deformation of the Gorda plate: Constraining deformation models with new geophysical data: Geology v. 32, p. 353-356
      • Goldfinger, C., Nelson, C.H., Morey, A., Johnson, J.E., Gutierrez-Pastor, J., Eriksson, A.T., Karabanov, E., Patton, J., Gràcia, E., Enkin, R., Dallimore, A., Dunhill, G., and Vallier, T., 2012. Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone, USGS Professional Paper # 1661F. U.S. Geological Survey, Reston, VA, 184 pp.
      • McCrory, P. A., Blair, J. L., Oppenheimer, D. H., and Walter, S. R., 2006. Depth to the Juan de Fuca slab beneath the Cascadia subduction margin; a 3-D model for sorting earthquakes U. S. Geological Survey
      • Nelson, A.R., Kelsey, H.M., and Witter, R.C., 2006. Great earthquakes of variable magnitude at the Cascadia subduction zone: Quaternary Research, doi:10.1016/j.yqres.2006.02.009, p. 354-365.
      • Plafker, G., 1972. Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics in Journal of Geophysical Research, v. 77, p. 901-925.
      • USGS Quaternary Fault Database: http://earthquake.usgs.gov/hazards/qfaults/
      • Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D., and Sagiya, T., 2003. A revised dislocation model of interseismic deformation of the Cascadia subduction zone Journal of Geophysical Research, B, Solid Earth and Planets v. 108, no. 1.

Earthquake Anniversary: M 7.8 Gorkha (Nepal) Earthquake

An anniversary is for the Gorkha (Nepal) Earthquake from 1 year ago. I have several Earthquake Reports listed below. These include a variety of observations and comparisons with historic and prehistoric earthquakes that I compiled.

USGS slip models: http://earthjay.com/?p=2478

First Report: http://earthjay.com/?p=2357
Comparison with historic EQs http://earthjay.com/?p=2361
USGS Intensity Reports http://earthjay.com/?p=2387
Surface Displacement and Ground Motion Models http://earthjay.com/?p=2391
More historic comparisons http://earthjay.com/?p=2396
Coseismic Surface Deformation Model http://earthjay.com/?p=2410
Aftershock Report http://earthjay.com/?p=2437
Mainshock & Aftershock Update #1 http://earthjay.com/?p=2439
Mainshock & Aftershock Update #2 http://earthjay.com/?p=2450
Mainshock & Aftershock Update #3 (and interview with Ian Pierce and Steven Angster) http://earthjay.com/?p=2466

Here is a summary of the observations:

Mw 7.8 Earthquake Finite Fault Plane Solution from the USGS.

Mw 7.3 Earthquake Finite Fault Plane Solution.

Here is the map that I put together. I have placed the USGS epicenters with two color schemes. The size of the yellow dots represents earthquake magnitude. The degree of redness designates the time (earlier-April = pink & later-May = red). Note how there are some pink colored epicenters in the region of the M 7.3 earthquake. These pink colored earthquakes all occurred in April. The red ones are from May. These epicenters may not be plotted with the greatest certainty, though any uncertainty is possibly shared between them. So, there relative positions are possibly good.


Here is an updated regional map that incorporates Hough and Bilham (2008 ) and today’s seismicity. The historic and prehistoric earthquake slip patches are also shown. The three other data sets now include Bilham (2004), Bettinelli et al (2006), and Berryman et al. (2009). I provide information about how I compiled these data sets on this page.


Here is the updated DYFI map. Note how broadly this earthquake was felt.


Here are two visualizations of the seismic waves as they propagate through the Earth. These are records from the USArray Transportable Array. Your tax dollars at work, unless congress defunds these projects. This first video shows vertical motion as red and blue.

This second video shows horizontal motion with magnitude and direction.

Earthquake Report: Burma!

Here is my preliminary earthquake report. There was an earthquake with a magnitude of M 6.9 in Burma. Here is the USGS web page for this earthquake. Based upon the modeling, this appears to likely be a very damaging earthquake to people and their belongings.

Here is the poster. I will update this later today.


There was an earthquake with a magnitude M 6.7 in January. Here is my report for that earthquake.
Below is the earthquake poster for that report. The M 6.7 earthquake (here is the USGS web page for this earthquake) possibly occurred along the Churachandpur-Mao fault (Wang et al., 2014). Based upon our knowledge of the regional tectonics I interpret this earthquake to have a right-lateral oblique sense of motion.


Here is the Curray (2005) plate tectonic map.


Here is a map from Maurin and Rangin (2009) that shows the regional tectonics at a larger scale. They show how the Burma and Sunda plates are configured, along with the major plate boundary faults and tectonic features (ninetyeast ridge). The plate motion vectors for India vs Sunda (I/S) and India vs Burma (I/B) are shown in the middle of the map. Note the Sunda trench is a subduction zone, and the IBW is also a zone of convergence. There is still some debate about the sense of motion of the plate boundary between these two systems. This map shows it as strike slip, though there is evidence that this region slipped as a subduction zone (not strike-slip) during the 2004 Sumatra-Andaman subduction zone earthquake. I include their figure caption as a blockquote below.


Structural fabric of the Bay of Bengal with its present kinematic setting. Shaded background is the gravity map from Sandwell and Smith [1997]. Fractures and magnetic anomalies in black color are from Desa et al.[2006]. Dashed black lines are inferred oceanic fracture zones which directions are deduced from Desa et al. in the Bay of Bengal and from the gravity map east of the 90E Ridge. We have flagged particularly the 90E and the 85E ridges (thick black lines). Gray arrow shows the Indo-Burmese Wedge (indicated as a white and blue hatched area) growth direction discussed in this paper. For kinematics, black arrows show the motion of the India Plate with respect to the Burma Plate and to the Sunda Plate (I/B and I/S, respectively). The Eurasia, Burma, and Sunda plates are represented in green, blue, and red, respectively.

Wang et al. (2014) also have a very detailed map showing historic earthquakes along the major fault systems in this region. They also interpret the plate boundary into different sections, with different ratios of convergence:shear. I include their figure caption as a blockquote below.


Simplified neotectonic map of the Myanmar region. Black lines encompass the six neotectonic domains that we have defined. Green and Yellow dots show epicenters of the major twentieth century earthquakes (source: Engdahl and Villasenor [2002]). Green and yellow beach balls are focal mechanisms of significant modern earthquakes (source: GCMT database since 1976). Pink arrows show the relative plate motion between the Indian and Burma plates modified from several plate motion models [Kreemer et al., 2003a; Socquet et al., 2006; DeMets et al., 2010]. The major faults west of the eastern Himalayan syntax are adapted from Leloup et al. [1995] and Tapponnier et al. [2001]. Yellow triangle shows the uncertainty of Indian-Burma plate-motion direction.

Here is a map from Wang et al. (2014) that shows even more details about the faulting in the IBW. Today’s fault occurred nearby the CMf label. I include their figure caption as a blockquote below. Wang et al. (2014) found evidence for active faulting in the form of shutter ridges and an offset alluvial fan. Shutter ridges are mountain ridges that get offset during a strike-slip earthquake and look like window shutters. This geologic evidence is consistent with the moment tensor from today’s earthquake. There is a cross section (C-C’) that is plotted at about 22 degrees North (we can compare this with the Maurin and Rangin (2009) cross section if we like).


Figure 6. (a) Active faults and anticlines of the Dhaka domain superimposed on SRTM topography. Most of the active anticlines lie within 120 km of the deformation front. Red lines are structures that we interpret to be active. Black lines are structures that we consider to be inactive. CT = Comilla Tract. White boxes contain the dates and magnitudes of earthquakes mentioned in the text. CMf = Churachandpur-Mao fault; SM = St. Martin’s island antilcline; Da = Dakshin Nila anticline; M= Maheshkhali anticline; J = Jaldi anticline; P = Patiya anticline; Si = Sitakund anticline; SW= Sandwip anticline; L = Lalmai anticline; H = Habiganj anticline; R = Rashidpur anticline; F = Fenchunganj anticline; Ha = Hararganj anticline; Pa = Patharia anticline. (b) Profile from SRTM topography of Sandwip Island.

Here is the Wang et al. (2014) cross section. I include their figure caption as a blockquote below.


Schematic cross sections through two domains of the northern Sunda megathrust show the geometry of the megathrust and hanging wall structures. Symbols as in Figure 18. (a) The megathrust along the Dhaka domain dips very shallowly and has secondary active thrust faults within 120 km of the deformation front. See Figures 2 and 6 for profile location.

Science on Tap Humboldt 2016.04.06

I present material about the Cascadia subduction zone at the Humboldt Science on Tap held on 4/6/16 at Blondies in Arcata, CA. This page has some supporting material from this presentation, including the digital presentation file.

    This is the digital presentation

  • Here is the digital presentation (100 MB pptx)

    This is a video of the presentation

  • Here is the digital file of the embedded video below (350 MB mp4)
  • Here is the yt link for the embedded video below

    Here are some sources of information about the Cascadia subduction zone

  • For the 315th anniversary of the most recent full rupture CSZ earthquake I put together a summary of our state of knowledge about the CSZ and that 1700 A.D. Jan. 26 earthquake. 2015.01.26
  • The USGS (and others) put together an educational video about the CSZ. I post this video and other supporting information online here: 2015.10.08

Here is an educational video about Cascadia subduction zone earthquakes and tsunamis.

Here is a tsunami hindcast for the Jan 26, 1700 Cascadia subduction zone megathrust earthquake that may have ruptured all the way south to Humboldt Bay. This is the download link for the embedded video below (35 MB mp4).

Here is an animation showing the Holocene record of earthquakes along the Cascadia subduction zone (Goldfinger et al., 2012).

Here is an animation of a Cascadia subduction zone earthquake generated tsunami. This is the download link for the embedded video below (15 MB mp4).

Volcano Report: Pavlof

Pavlof Volcano (PV) is erupting. PV is located near Sand Point Alaska, along the eastern Aleutian Magmatic Arc. The Alaska Volcano Observatory placed the PV into alert level “warning” and aviation color code red. Below is the description of the current conditions in blockquote:

Pavlof Volcano began erupting abruptly this afternoon, sending an ash cloud to 20,000 ft ASL as reported by a pilot. As of 4:18 pm AKDT (00:18 UTC), ash was reportedly moving northward from the volcano. Seismicity began to increase from background levels at about 3:53 pm (23:53 UTC) with quick onset of continuous tremor, which remains at high levels. AVO is raising the Aviation Color Code to RED and the Volcano Alert Level to WARNING.

Here is the AVO page for Pavlof.

This is a map that shows the Volcanoes in this region (Schaefer et al., 2014). Here is a link to a larger sized, higher resolution version of the map (34 MB pdf).


This is a screen shot showing the alert status and the definition of “red.” This page is dynamic, so if you click on the above link to the AVO page, it will have different content. I include images from the Forecast parts of the page below.


Pavlof Volcano Description


From the AVO:

Pavlof Volcano is a snow- and ice-covered stratovolcano located on the southwestern end of the Alaska Peninsula about 953 km (592 mi) southwest of Anchorage. The volcano is about 7 km (4.4 mi) in diameter and has active vents on the north and east sides close to the summit. With over 40 historic eruptions, it is one of the most consistently active volcanoes in the Aleutian arc. Eruptive activity is generally characterized by sporadic Strombolian lava fountaining continuing for a several-month period. Ash plumes as high as 49,000 ft ASL have been generated by past eruptions of Pavlof, and during the 2013 eruption, ash plumes as high as 27,000 feet above sea level extending as much as 500 km (310 mi) beyond the volcano were generated. The nearest community, Cold Bay, is located 60 km (37 miles) to the southwest of Pavlof.

    Forecasts

  • Ashfall Forecast
    • This and all following ashfall graphics is the output of a mathematical model of volcanic ash transport and deposition on the ground (Ash3D, USGS).
    • This model shows expected ashfall accumulation (deposit thickness) for actual or hypothetical eruptions.
    • AVO produces this graphic when a volcano is restless by assuming a reasonable hypothetical eruption, in order to provide a pre-eruptive forecast of areas likely to be affected. During an eruption, AVO updates the forecast with actual observations (eruption start time and duration, plume height) as they become available.
    • Colored contour lines represent points of equal ash thickness on the ground. Small accumulations of ash may occur beyond the “Trace” contour. Actual deposit thickness may vary from the forecast as the modelled points are based on our best estimates. Thickness terms are explained here.
    • This graphic does not show ash cloud movement in the atmosphere; please refer to the other graphics for ash cloud forecasts. Click here to return to other models output.


  • Ash Cloud Height Forecast
    • This model shows expected movement of an ash cloud in the atmosphere for actual or hypothetical eruptions.
    • AVO produces this graphic when a volcano is restless by assuming a reasonable hypothetical eruption, in order to provide a pre-eruptive forecast of airspace likely to be affected. During an eruption, AVO updates the forecast with actual observations (eruption start time and duration, plume height) as they become available.
    • Colors represent the height of the top of the ash cloud, in feet above sea level, as it drifts downwind.
    • This graphic does not show ashfall deposition on the ground; go here for ashfall graphic. Note that it is possible for ash clouds to move overhead with little or no fallout on the ground.
    • For more information about ASH3D, see USGS Open-File Report 2013-1122.


  • Ash Cloud Load Forecast
    • This model shows expected load (amount) of ash in the atmosphere for actual or hypothetical eruptions.
    • AVO produces this graphic when a volcano is restless by assuming a reasonable hypothetical eruption, in order to provide a pre-eruptive forecast of airspace likely to be affected. During an eruption, AVO updates the forecast with actual observations (eruption start time and duration, plume height) as they become available.
    • Colors represent amounts of ash in the atmosphere, summed from the bottom to the top of the cloud. Warmer colors represent areas of greater ash; colder colors mean less ash.
      This graphic does not show ashfall deposition on the ground; go here for ashfall graphic. Note that it is possible for ash clouds to move overhead with little or no fallout on the ground.


  • Puff Cloud Height Forecast
    • This model shows expected movement of an ash cloud in the atmosphere for actual or hypothetical eruptions.
    • AVO produces this graphic when a volcano is restless by assuming a reasonable hypothetical eruption, in order to provide a pre-eruptive forecast of airspace likely to be affected. During an eruption, AVO will update the forecast with actual observations (eruption start time and duration, plume height) as they become available.
    • Colored dots represent the estimated height of the top of the ash cloud, in feet above sea level, as it drifts downwind. [Change the color bar legend to “Height of top of ash cloud”]
    • This graphic does not show ashfall deposition on the ground; go here for ashfall graphic. Note that it is possible for ash clouds to move overhead with little or no fallout on the ground.
    • For more information about Puff, see http://pafc.arh.noaa.gov/puff/index.html.


  • Trajectory Forecast
    • This trajectory graphic is the output of a mathematical model showing wind direction and speed at different altitudes above sea level (HYSPLIT, NOAA). It does not contain information about ash emissions from the volcano.
    • Colored lines show the direction an ash cloud emanating from a point source (the volcano) would travel at different altitudes in feet above ground level. A given eruption cloud may not reach all altitudes shown.
    • Symbols are spaced one hour apart and reflect the forecast speed of the ash cloud.
    • This model is updated every 6 hours.
      • UTC to AKDT conversion (Alaska Daylight Time):

      • 0000 UTC = 4:00 PM AKDT on the previous day as UTC
      • 0600 UTC = 10:00 PM AKDT on the previous day as UTC
      • 1200 UTC = 4:00 AM AKDT on the same day as UTC
      • 1800 UTC= 10:00 AM AKDT on the same day as UTC
    • For more information about HYSPLIT see: http://www.arl.noaa.gov/ready/traj_alaska.html.


    Earthquakes Also

  • Interesting that to the west there have been a few earthquakes recently. Here is a map that shows those regions, along with the volcano locations. Note Pavlof is along the eastern part of this map, approximately 900 km east of the Amlia fracture zone (which is just east of the largest cluster of earthquakes.


    Images from the 2014/11/12-16 eruption

  • In 2014/11/12 Pavlof Volcano began erupting. The report from the Global Volcanism Project for that eruption is here.
    • 2014/11/16 07:02 AM UTC – NASA EO-1 Advanced Land Imager image high temperature flowage deposit on the northwest flank of Pavlof Volcano. This shortwave infrared image is sensitive to very high temperatures. This flowage deposit likely contains both new lava and hot rock debris, but the distribution has not yet been determined. The deposit extends for about 3.3 miles (5.4 km) from the vent.

    • 2016/11/15 21:46 PM UTC – Satellite image from the USGS/NASA Landsat-8 satellite showing the eruption cloud at Pavlof Volcano on November 15 at 12:46 pm AKST (21:46 UTC). This is just a portion of the eruption cloud, which extended for more than 250 miles to the northwest at the time this image was collected. In this image, the distance from the erupting vent to the upper left corner of the image is 45 miles (70 km). The shadow of the eruption cloud on the underlying meteorological clouds can be seen in this image. Pilots reported the height of the cloud at 35,000 ft (10.7 km) above sea level.

    References:

  • Global Volcanism Program, 2015. Report on Pavlof (United States). In: wunderman, R (ed.), Bulletin of the Global Volcanism Network, 40:4. Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.BGVN201504-312030.
  • Schaefer, J.R., Cameron, C.E., and Nye, C.J., 2014, Historically active volcanoes of Alaska, in Schaefer, J.R., Cameron, C.E., and Nye, C.J., Historically active volcanoes of Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 133 v. 1.2, 1 sheet, scale 1:3,000,000. doi:10.14509/20181

Good Friday Earthquake: 1964/03/27 in Alaska

Today we commemorate the Good Friday Earthquake, which occurred on March 27, 1964. This is the second largest earthquake ever recorded on modern seismographic instruments. I summarize some of the information that we have about this earthquake, but this is far from a comprehensive display. The Good Friday Earthquake is one of the most studied earthquakes, along with the 20122/03/11 Tohoku-Oki earthquake. Much of what we learned about the 1964 earthquake was originally presented in a series of USGS Professional Papers here.

Below is an educational video from the USGS that presents material about subduction zones and the 1964 earthquake and tsunami in particular.
Youtube Source IRIS

mp4 file for downloading.

    Credits:

  • Animation & graphics by Jenda Johnson, geologist
  • Directed by Robert F. Butler, University of Portland
  • U.S. Geological Survey consultants: Robert C. Witter, Alaska Science Center Peter J. Haeussler, Alaska Science Center
  • Narrated by Roger Groom, Mount Tabor Middle School

This is a map from Haeussler et al. (2014). The region in red shows the area that subsided and the area in blue shows the region that uplifted during the earthquake. These regions were originally measured in the field by George Plafker and published in several documents, including this USGS Professional Paper (Plafker, 1969).


Here is a cross section showing the differences of vertical deformation between the coseismic (during the earthquake) and interseismic (between earthquakes).


This figure, from Atwater et al. (2005) shows the earthquake deformation cycle and includes the aspect that the uplift deformation of the seafloor can cause a tsunami.


Here is a figure recently published in the 5th International Conference of IGCP 588 by the Division of Geological and Geophysical Surveys, Dept. of Natural Resources, State of Alaska (State of Alaska, 2015). This is derived from a figure published originally by Plafker (1969). There is a cross section included that shows how the slip was distributed along upper plate faults (e.g. the Patton Bay and Middleton Island faults).


Here is a graphic showing the sediment-stratigraphic evidence of earthquakes in Cascadia, but the analogy works for Alaska also. Atwater et al., 2005. There are 3 panels on the left, showing times of (1) prior to earthquake, (2) several years following the earthquake, and (3) centuries after the earthquake. Before the earthquake, the ground is sufficiently above sea level that trees can grow without fear of being inundated with salt water. During the earthquake, the ground subsides (lowers) so that the area is now inundated during high tides. The salt water kills the trees and other plants. Tidal sediment (like mud) starts to be deposited above the pre-earthquake ground surface. This sediment has organisms within it that reflect the tidal environment. Eventually, the sediment builds up and the crust deforms interseismically until the ground surface is again above sea level. Now plants that can survive in this environment start growing again. There are stumps and tree snags that were rooted in the pre-earthquake soil that can be used to estimate the age of the earthquake using radiocarbon age determinations. The tree snags form “ghost forests.


This is a photo that I took along the Seward HWY 1, that runs east of Anchorage along the Turnagain Arm. I attended the 2014 Seismological Society of America Meeting that was located in Anchorage to commemorate the anniversary of the Good Friday Earthquake. This is a ghost forest of trees that perished as a result of coseismic subsidence during the earthquake. Copyright Jason R. Patton (2014). This region subsided coseismically during the 1964 earthquake. Here are some photos from the paleoseismology field trip. (Please contact me for a higher resolution version of this image: quakejay at gmail.com)


Here is the USGS shakemap for this earthquake. The USGS used a fault model, delineated as black rectangles, to model ground shaking at the surface. The color scale refers to the Modified Mercalli Intensity scale, shown at the bottom.


http://earthjay.com/earthquakes/19640327_alaska/intensity.jpg

There is a great USGS Open File Report that summarizes the tectonics of Alaska and the Aleutian Islands (Benz et al., 2010). I include a section of their poster here. Below is the map legend.




Most recently, there was an earthquake along the Alaska Peninsula, a M 7.1 on 2016.01.24. Here is my earthquake report for this earthquake. Here is a map for the earthquakes of magnitude greater than or equal to M 7.0 between 1900 and today. This is the USGS query that I used to make this map. One may locate the USGS web pages for all the earthquakes on this map by following that link.


Here is an interesting map from Atwater et al., 2001. This figure shows how the estuarine setting in Portage, Alaska (along Turnagain Arm, southeast of Anchorage) had recovered its ground surface elevation in a short time following the earthquake. Within a decade, the region that had coseismically subsided was supporting a meadow with shrubs. By 1980, a spruce tree was growing here. This recovery was largely due to sedimentation, but an unreconciled amount of postseismic tectonic uplift contributed also. I include their figure caption as a blockquote.


(A and B) Tectonic setting of the 1964 Alaska earthquake. Subsidence from Plafker (1969). (C) Postearthquake deposits and their geologic setting in the early 1970s. (D–F) Area around Portage outlined in C, showing the landscape two years before the earthquake (D), two years after the earthquake (E), and nine years after the earthquake (F). In F, location of benchmark P 73 is from http://www.ngs.noaa.gov/cgi-bin/ds2.prl and the Seward (D-6) SE 7.5-minute quadrangle, provisional edition of 1984.

    Here is the tsunami forecast animation from the National Tsunami Warning Center. Below the animation, I include their caption as a blockquote. This includes information about the earthquake and the formation of the warning center.

  • Here is a link to the file for the embedded video below (22 MB 720 mp4)
  • Here is a link to the higher resolution file for the embedded video below (44 MB 1080 mp4)
  • At 5:36 pm on Friday, March 27, 1964 (28 March, 03:36Z UTC) the largest earthquake ever measured in North America, and the second-largest recorded anywhere, struck 40 miles west of Valdez, Alaska in Prince William Sound with a moment magnitude we now know to be 9.2. Almost an hour and a half later the Honolulu Magnetic and Seismic Observatory (later renamed the Pacific Tsunami Warning Center, or PTWC) was able to issue its first “tidal wave advisory” that noted that a tsunami was possible and that it could arrive in the Hawaiian Islands five hours later. Upon learning of a tsunami observation in Kodiak Island, Alaska, an hour and a half later the Honolulu Observatory issued a formal “tidal wave/seismic sea-wave warning” cautioning that damage was possible in Hawaii and throughout the Pacific Ocean but that it was not possible to predict the intensity of the tsunami. The earthquake did in fact generate a tsunami that killed 124 people (106 in Alaska, 13 in California, and 5 in Oregon) and caused about $2.3 billion (2016 dollars) in property loss all along the Pacific coast of North America from Alaska to southern California and in Hawaii. The greatest wave heights were in Alaska at over 67 m or 220 ft. and waves almost 10 m or 32 ft high struck British Columbia, Canada. In the “lower 48” waves as high as 4.5 m or 15 ft. struck Washington, as high as 3.7 m or 12 ft. struck Oregon, and as high as 4.8 m or over 15 ft. struck California. Waves of similar size struck Hawaii at nearly 5 m or over 16 ft. high. Waves over 1 m or 3 ft. high also struck Mexico, Chile, and even New Zealand.
  • As part of its response to this event the United States government created a second tsunami warning facility in 1967 at the Palmer Observatory, Alaska–now called the National Tsunami Warning Center (NTWC, http://ntwc.arh.noaa.gov/ )–to help mitigate future tsunami threats to Alaska, Canada, and the U.S. Mainland.
  • Today, more than 50 years since the Great Alaska Earthquake, PTWC and NTWC issue tsunami warnings in minutes, not hours, after a major earthquake occurs, and will also forecast how large any resulting tsunami will be as it is still crossing the ocean. PTWC can also create an animation of a historical tsunami with the same tool that it uses to determine tsunami hazards in real time for any tsunami today: the Real-Time Forecasting of Tsunamis (RIFT) forecast model. The RIFT model takes earthquake information as input and calculates how the waves move through the world’s oceans, predicting their speed, wavelength, and amplitude. This animation shows these values through the simulated motion of the waves and as they travel through the world’s oceans one can also see the distance between successive wave crests (wavelength) as well as their height (half-amplitude) indicated by their color. More importantly, the model also shows what happens when these tsunami waves strike land, the very information that PTWC needs to issue tsunami hazard guidance for impacted coastlines. From the beginning the animation shows all coastlines covered by colored points. These are initially a blue color like the undisturbed ocean to indicate normal sea level, but as the tsunami waves reach them they will change color to represent the height of the waves coming ashore, and often these values are higher than they were in the deeper waters offshore. The color scheme is based on PTWC’s warning criteria, with blue-to-green representing no hazard (less than 30 cm or ~1 ft.), yellow-to-orange indicating low hazard with a stay-off-the-beach recommendation (30 to 100 cm or ~1 to 3 ft.), light red-to-bright red indicating significant hazard requiring evacuation (1 to 3 m or ~3 to 10 ft.), and dark red indicating a severe hazard possibly requiring a second-tier evacuation (greater than 3 m or ~10 ft.).
  • Toward the end of this simulated 24 hours of activity the wave animation will transition to the “energy map” of a mathematical surface representing the maximum rise in sea-level on the open ocean caused by the tsunami, a pattern that indicates that the kinetic energy of the tsunami was not distributed evenly across the oceans but instead forms a highly directional “beam” such that the tsunami was far more severe in the middle of the “beam” of energy than on its sides. This pattern also generally correlates to the coastal impacts; note how those coastlines directly in the “beam” are hit by larger waves than those to either side of it.

Earthquake Report: Aleutians, Atka (near Amlia fracture zone)!

This morning we had a series of earthquakes along the Aleutian trench near Atka and the Amlia fracture zone. This is a very active part of this plate boundary and I summarize some of this below. The USGS has a great review of the tectonics of the Aluetian Arc in an Open File report here.

    Here are the USGS web pages for the larger earthquakes in this region today, in order of occurrence:

  • 2016.03.12 11:55 M 4.6
  • 2016.03.12 13:23 M 5.4
  • 2016.03.12 14:15 M 4.0 (out board of trench)
  • 2016.03.12 18:01 M 4.6
  • 2016.03.12 18:06 M 6.3

Below is my interpretive map where I use Google Earth and the kml (keyhole markup language) files from the USGS to plot epicenters, Modified Mercalli Intensity Scale (MMI) contours, and the subduction zone slab contours for this region (Hayes et al., 2012). I also place the USGS moment tensors for the two largest earthquakes (M 5.4 and M 6.3). The MMI is a qualitative measure of shaking intensity. More on the MMI scale can be found here and here.

There is a legend that shows how moment tensors can be interpreted. Moment tensors are graphical solutions of seismic data that show two possible fault plane solutions. One must use local tectonics, along with other data, to be able to interpret which of the two possible solutions is correct. The legend shows how these two solutions are oriented for each example (Normal/Extensional, Thrust/Compressional, and Strike-Slip/Shear). There is more about moment tensors and focal mechanisms at the USGS.

These earthquakes are the result of north-northwest compression from the subduction of the Pacific plate underneath the North America plate to the north. These earthquakes occurred in the region of the subduction zone west of where the Amlia fracture zone is aligned. The AMZ is a left lateral strike slip oriented fracture zone, which displaces crust of unequal age, beneath the megathrust. The difference in age results in a variety of factors that may contribute to differences in fault stress across the fracture zone (buoyancy, thermal properties, etc). For example, older crust is colder and denser, so it sinks lower into the mantle and exerts a different tectonic force upon the overriding plate.

The red-orange-yellow lines are slab contour lines from Hayes et al. (2012). These lines are a best estimate for the depth to the subduction zone fault. These are based largely upon seismicity and there is currently an effort to update these contours to integrate other data types.

    I include some inset figures.

  • The lower right figure from Saltus and Barnett (2000) shows an oblique cross section of the Aleutian subduction zone that is a part of the “Eastern Aleutian Volcanic Arc Digital Model.’
  • In the lower left corner, I place a map created by Peter Haeussler, USGS, which shows the historic earthquakes along the Alaska and Aleutian subduction zones.
  • Above Hauessler’s map, I show a cross section of a subduction zone through the two main parts of the earthquake cycle. The interseismic part (in-between earthquakes) and the coseismic part (during earthquakes). This was developed by George Plafker and published in his 1972 paper on the Good Friday Earthquake.


In July 2015, just to the east, there were some earthquakes near the Fox Islands. Here is my earthquake report for those earthquakes. Below is a map showing my interpretation.


The region near the Amlia fracture zone was active in September of 2015 also. Here is my earthquake report from that series of earthquakes. Below is a map from this 2015/09 report that shows some late 20th and early 21st century earthquakes and their moment tensors for this region of the Aleutian subduction zone.


Shortly after, in November 2015, there was more activity in this region. Here is my summary report on those earthquakes. Below is a map that shows earthquake epicenters and moment tensors from November 2015.


This map is particularly useful on its own. This is the map that shows historic earthquake slip regions as pink polygons (Peter Haeussler, USGS). Dr. Haeussler also plotted the magnetic anomalies (grey regions), the arc volcanoes (black diamonds), and the plate motion vectors (mm/yr, NAP vs PP).


Speaking of the 1964 earthquake, here is a map that shows the regions of coseismic uplift and subsidence observed following that earthquake. The 27 March, 1964 M 9.2 earthquake is the second largest earthquake ever recorded on modern seismometers. This figure can be compared to the cross section below.


Here is the Plafker (1972)cross-section graphic on its own.


This figure shows a summary of the measured horizontal and vertical displacements from the Good Friday Earthquake. I include a figure caption from here below as a blockquote.


Profile and section of coseismic deformation associated with the 1964 Alaska earthquake across the Aleutian arc (oriented NW-SE through Middleton and Montague Islands). Profile of horizontal and vertical components of coseismic slip (above) and inferred slip partitioning between the megathrust and intraplate faults (below). From Plafker (1965, 1967; 1972)

Here is a graphic showing the sediment-stratigraphic evidence of earthquakes in Cascadia, but the analogy works for Alaska also. Atwater et al., 2005. There are 3 panels on the left, showing times of (1) prior to earthquake, (2) several years following the earthquake, and (3) centuries after the earthquake. Before the earthquake, the ground is sufficiently above sea level that trees can grow without fear of being inundated with salt water. During the earthquake, the ground subsides (lowers) so that the area is now inundated during high tides. The salt water kills the trees and other plants. Tidal sediment (like mud) starts to be deposited above the pre-earthquake ground surface. This sediment has organisms within it that reflect the tidal environment. Eventually, the sediment builds up and the crust deforms interseismically until the ground surface is again above sea level. Now plants that can survive in this environment start growing again. There are stumps and tree snags that were rooted in the pre-earthquake soil that can be used to estimate the age of the earthquake using radiocarbon age determinations. The tree snags form “ghost forests.


This is a photo that I took along the Seward HWY 1, that runs east of Anchorage along the Turnagain Arm. I attended the 2014 Seismological Society of America Meeting that was located in Anchorage to commemorate the anniversary of the Good Friday Earthquake. This is a ghost forest of trees that perished as a result of coseismic subsidence during the earthquake. Copyright Jason R. Patton (2014). (Please contact me for a higher resolution version of this image: quakejay at gmail.com)


Below is an educational video from the USGS that presents material about subduction zones and the 1964 earthquake and tsunami in particular.
Youtube Source IRIS

WMV file for downloading.
mp4 file for downloading.

    Credits:

  • Animation & graphics by Jenda Johnson, geologist
  • Directed by Robert F. Butler, University of Portland
  • U.S. Geological Survey consultants: Robert C. Witter, Alaska Science Center Peter J. Haeussler, Alaska Science Center
  • Narrated by Roger Groom, Mount Tabor Middle School

Earthquake Report: Sumatra!

We just had a M = 7.8 earthquake southwest of the Island of Sumatra, a volcanic arc formed from the subduction of the India-Australia plate beneath the Sunda plate (part of Eurasia). Here is the USGS website for this earthquake.

Here is my preliminary earthquake report poster. I will update this after class.

I have presented materials related to the 2004 Sumatra-Andaman subduction zone earthquake here and more here.

I include a map in the upper right corner that shows the historic earthquake rupture areas.


Here is a poster that shows some earthquakes in the Andaman Sea. This is from my earthquake report from 2015.11.08.


This map shows the fracture zones in the India-Australia plate.